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Abstract. In this paper we introduce a three replica potential, useful for examining the
structure of metastable states above the static transition temperature, in the sphericalp-spin
model. Studying the minima of the potential we are able to find the distance between the
nearest equilibrium and local equilibrium states, thus obtaining information on the dynamics of
the system. Furthermore, the analysis of the potential at the dynamical transition temperature
suggests that equilibrium states are not randomly distributed in the phase space.

1. Introduction

It has been realized that there are model systems for which the dynamics can be analytically
studied in the infinite volume limit. In some of these systems, below a characteristic
temperatureTd , called the dynamical transition temperature, the phase space of the
equilibrium configurations breaks down into regions (hereafter called valleys) where the
system is trapped for an infinite time. Therefore, in this situation, if the system is near
an equilibrium configuration at the initial time, it will remain in this region forever. The
number of these regions is exponentially high as soon asT > Tc, whereTc < Td is the
static transition temperature, at which only a finite number of valleys start to dominate
the partition function; these features are clearly revealed by an analysis based on the TAP
equations [1, 5, 9]. All the equilibrium valleys are characterized by the same energy density
E, entropy densitySv and self-overlapqEA. The total entropy density of the system will
be given by

S = Sv +6 (1.1)

where6 is the so-called configurational entropy or complexity, i.e.6 = (1/N) lnN ,
whereN is the exponentially high number of valleys andN is the size of the system. The
complexity goes to zero at the transition temperatureTc.

It is also true that in the regionT < Td , if the system starts randomly at the initial
time, the energy of the system evolves towards a value greater than the equilibrium one
[5, 2]. In other words, metastable states are present. In the rest of the paper these metastable
states will be also called local equilibrium states, while the name equilibrium states will be
reserved for valleys which have the correct equilibrium energy density.
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It is clear that these features, especially the last one, are likely to be an artefact of
the mean-field approximation, which is correct in these models. It is therefore interesting
to try to understand what happens when corrections to the mean field theory are present.
The simplest case we can think of is whenN is finite and large: the times to escape
from a valley are likely to be exponentially high inN . The direct computation of these
exponentially large times using the dynamical equations is rather involved and it has not
been done. A partial solution to the problem consists of assuming that the dynamics is
dominated at ultra large times by the crossing of free energy barriers between different
valleys and some information can thus be gathered by computing these barriers and by the
analysis of the mutual disposition of metastable states.

This programme cannot be pursued directly with the usual tools of statistical mechanics
and we must resort to using a different method, thereal replica method[5, 6], in which two
or more (in generalM) real replicas are introduced. If we denote byq theM ×M matrix
of the overlaps imposed among the different real replicas

qa,b = 1

N

∑
i

σ ai σ
b
i (1.2)

detailed information on the free energy landscape is carried by the free energy as a function
of q. This programme is quite recent. Up to now only the caseM = 2 has been examined
in detail. In this case one computes a two-replica potentialV2(q12), which is the free energy
of replica 2 constrained to have overlapq12 with replica 1, supposed to stay at equilibrium
[6]. A different potentialW12(q12) can be introduced, defined as the free energy increase
of a pair of two replicas if we constrain them to stay at mutual overlapq12 [5]. The main
difference among these two cases is as follows.

In the first case replica 1 is at equilibrium and replica 2 is not, because it must satisfy
a constraint; obviously for some particular values ofq12 (e.g. q12 = 0) the constraint is
harmless and replica 2 is at equilibrium too. In the second case replicas 1 and 2 are chosen
in such a way as to satisfy a constraint and both will be in general out of equilibrium.
The first construction is the most appropriate one if we want to obtain information on the
free energy landscape around an equilibrium configuration. The relevant computations have
already been done and they will be summarized here for the reader’s convenience. From
this two-replica potential one can compute the dynamical transition and the configurational
entropy, and obtain a first estimate of the barriers separating different valleys.

The question we address in this paper is the organization of equilibrium and local
equilibrium states. For example, given a generic equilibrium configuration we would like
to know which is the maximum overlap̄q at which a local equilibrium state is found. In
the same fashion we would like to know which is the maximum overlapq? at which an
equilibrium state is found. It is not evidenta priori if q̄ 6= q? (which is the result we find)
or not.

In order to answer this and other questions we need to consider a three-replica potential
V3(q12, q13, q23), which is the free energy of replica 3 constrained to stay at overlapq13 and
q23 from replica 1 and replica 2 respectively, where replica 1 is an equilibrium configuration
and replica 2 is constrained to stay at distanceq12 from replica 1. This potential is useful
to explore in more detail the free energy landscape with respect to the previous case where
only two replicas are present. The stationary points of this potential correspond to local
equilibrium states of the system.

In this paper we devote our attention to thep-spin spherical model, due to its simplicity
and to the relatively simple form of the free energy. Similar considerations can also be
applied to other models, but this will not be done in this paper. In section 2 we recall, for the
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reader’s convenience, the definition of thep-spin spherical model and the computation of the
two-replica potential. In section 3 we present the computation for the three-replica potential.
The shape of the potential and its stationary points, which correspond to local equilibrium
states, are computed in section 4. In section 5 we study the temperature dependence of
the various quantities involved. In section 6 we discuss some of the implications of our
findings for the dynamics of the system at large volume. Finally, two appendices contain
the more technical aspects of the computations.

2. The two-replica potential

Let us introduce thep-spin spherical model [14, 15, 3, 4], defined by the Hamiltonian

H(σ) =
∑

i1<i2<···<ip
Ji1...ipσi1 . . . σip

1

N

∑
i

σ 2
i = 1

(2.1)

where theσi are real variables satisfying the spherical constraint; the couplingsJi1...ip are
independent Gaussian variables with variance

J 2
i1...ip
= p!

2Np−1
. (2.2)

With these definitions

H(σ)H(σ ′) def= N 1
2f (qσσ ′) = N 1

2q
p

σσ ′ (2.3)

whereqσσ ′ is the overlap between the two configurations (see equation (1.2)). We note that
a generalization to random Hamiltonian models is possible, specified by different forms of
the correlation functionf [10, 11].

Following [6] we consider the two replica potentialV2(q12), defined as the free energy
cost to keep a configurationτ (replica 2) at a fixed overlapq12 with an equilibrium
configurationσ (replica 1):

−βNV2(q12) = −βN(Ffixed− Ffree)

= 1

Zfree

∫
dσ exp(−βH(σ)) log

(∫
dτ exp(−βH(τ))δ(qστ − q12)

)
−logZfree. (2.4)

It is important to note that in this way we compute the free energy of only the second
replicaτ , while we operate an annealed average overσ . Indeed, this can be done by virtue
of the assumption that the constrained free energyFfixed is self-averaging with respect toσ .
To perform the average on the quenched disorder, we use the replica trick:

−βNV2(q12) = lim
n,m→0

1

m

× log
∫

dσa dτb exp

[
− β

( n∑
a=1

H(σa)+
m∑
b=1

H(τb)

)] m∏
b=1

δ(qσ1τb − q12)

−logZfree. (2.5)
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We introduce the overlap submatrices

Q11
ab = qσaσb a = 1, . . . , n b = 1, . . . , n

Q12
ab = qσaτb a = 1, . . . , n b = 1, . . . , m

Q22
ab = qτaτb a = 1, . . . , m b = 1, . . . , m

(2.6)

andQ21
ab = Q12

ba in such a way that the total matrix of the overlapQ formed by the blocks
(2.6) is symmetric. With this definition, equation (2.5) gives

−βV2(q12) = Ext
Q

{
lim
n,m→0

1

2m

(
β2
∑
a,b

f (Qab)+ log detQ
)}
+ βFfree. (2.7)

Before proceeding with the calculation, it is necessary to give a sensible ansatz for the
overlap submatrices. From now on we will consider only temperaturesT greater thanTc
and zero external magnetic field; therefore, sinceQ11 refers to an independent free system,
we assume for it the symmetric form

Q11
ab = δab. (2.8)

The structure ofQ12 is in part imposed by the constraint in (2.5), that forces the first row
to be equal toq12. The simplest ansatz for the whole matrix is

Q12
ab = q12δa,1. (2.9)

This choice is compatible with an analysis in the high temperature region, i.e. we have
checked that in the limitβ → 0 it gives the expected result†. Moreover, we introduced an
additional parameterw12 for the rest of the matrix and verified that, even for finite values
of β, the saddle-point equations lead to the solutionw12 = 0: this confirms that ansatz (2.9)
is correct also in the temperature range we are interested in.

In [6] Q22 was assumed to be symmetric, but a successive examination suggested
that a more general one-step RSB form has to be taken [12], with variational parameters
(xr , r1, r0):

Q22
ab = (1− r1)δab + (r1− r0)εab + r0 (2.10)

whereεab is equal to one in the diagonal blocks of sizexr and zero elsewhere.
With these assumptions we obtain (see appendix A for details):

−2βV2(q12) = Ext
r0,r1,xr

{
2β2f (q12)+ β2(xr − 1)f (r1)− β2xrf (r0)

+ log(1− r1)+ 1

xr
log

(
1+ xr r1− r0

1− r1

)
+ r0− q2

12

1− r1+ xr(r1− r0)
}
. (2.11)

† At β = 0 the calculation ofV2 reduces to a purely geometrical problem; indeed, in this case the potential is
simply proportional to the volume of the phase-space region accessible to the constrained replica. Therefore, the
comparison with this limit is useful to test the correctness of the ansatz for the overlap matrices.
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Figure 1. The potentialV2 as a function ofq12 at β = 1.64 andp = 3; qEA = 0.546.

The parameters with respect to which the potential has to be maximized are(xr , r1, r0) and
the saddle-point equations read:

(1− xr)β2f ′(r1) = (1− xr) 1

(1− r1+ xr(r1− r0))2
(
r1− q2

12+ xr
(r1− r0)2

1− r1

)
xrβ

2f ′(r0) = xr (r0− q2
12)

(1− r1+ xr(r1− r0))2

β2f (r1)− β2f (r0) = 1

x2
r

log

(
1+ xr r1− r0

1− r1

)
− 1

xr
(r1− r0)1− r1+ xr(r1− 2r0+ q2

12)

(1− r1+ xr(r1− r0))2 .

(2.12)

Settingr0 = r1 we obviously recover the replica-symmetric expressions given in [6].
The RSB ansatz forQ22 slightly modifies the shape of the potentialV2 (see figure 1)

eliminating the secondary minimum found in [6], the interpretation of which was unclear.
All other features of the potential remain the same: there is an absolute minimum for
q12 = 0 with V2 = 0, which represents a typical equilibrium configuration of the second
replicaτ ; moreover forT < Td there is a relative minimumM for q12 = qEA corresponding
to the situation in whichτ is in the same pure state as the first replicaσ . We note that in
this second situation,τ is an equilibrium configuration, but it is not typical, in the sense
that, for entropic reasons, if the system were not constrained, it would be very unlikely to
find τ in the same pure state asσ . It turns out that the value of the potential inM gives
information on the number of dominant pure states, i.e.

V2(qEA) = T6 (2.13)

where6 is the configurational entropy [6].

3. The three-replica potential

As we have seen, the analysis ofV2 gives information on the self-overlap and on the number
of the states dominating at a certain temperature. How the phase space is organized in terms
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of these states remains rather unclear; in other words, we would like to know more about
their mutual overlaps, and study the evolution of the whole structure with the temperature.

A natural generalization of the method that leads toV2, consists of considering three
different real replicas, constrained to have fixed mutual overlap, as we are going to explain.
As in the case ofV2, we take a first-independent replicaρ which thermalizes freely at a
temperatureT . We then consider a second replicaσ constrained to thermalize at a fixed
overlapq12 with ρ. Finally, we calculate the free energy of a third replicaτ constrained to
have an overlapq13 with ρ andq23 with σ . In this way it is possible to define a three-replica
potentialV3, taking the difference between the constrained free energy ofτ and the free
energy of the unconstrained system:

−βNV3(q12, q13, q23)

= 1

Zfree

∫
dρ exp(−βH(ρ)) 1

Z(ρ; q12)

∫
dσ exp(−βH(σ))δ(qρσ − q12)

×log
∫

dτ exp(−βH(τ))δ(qρτ − q13)δ(qστ − q23)− logZfree (3.1)

with

Z(ρ; q12) =
∫

dσ exp(−βH(σ))δ(qρσ − q12). (3.2)

In our analysis we limit ourselves to the situation in which the temperatures are the same
for the three replicas. Our purpose is to study the potentialV3 in the plane(q13, q23) at
various fixed values ofq12. In this way, through the position of replica 3, we can explore
the neighbourhood of replica 2, which is not a configuration of equilibrium for the free
system; this is possible because of the different role of the first and second replica. By the
usual trick we obtain

−βNV3(q12, q13, q23) = lim
n,m,l→0

1

l

× log
∫

dρa dσb dτc exp

[
− β

( n∑
a=1

H(ρa)+
m∑
b=1

H(σb)+
l∑

c=1

H(τc)

)]

×
m∏
b=1

δ(qρ1σb − q12)

l∏
c=1

δ(qρ1τc − q13)δ(qσ1τc − q23)− logZfree. (3.3)

Again we introduce the submatrices:

Q11
ab = qρaρb a = 1, . . . , n b = 1, . . . , n

Q12
ab = qρaσb a = 1, . . . , n b = 1, . . . , m

Q22
ab = qσaσb a = 1, . . . , m b = 1, . . . , m

Q13
ab = qρaτb a = 1, . . . , n b = 1, . . . , l

Q23
ab = qσaτb a = 1, . . . , m b = 1, . . . , l

Q33
ab = qτaτb a = 1, . . . , l b = 1, . . . , l

(3.4)

together withQ21
ab = Q12

ba, Q
31
ab = Q13

ba, Q
32
ab = Q23

ba, in such a way that the total overlap
matrix Q is symmetric. In analogy with the case ofV2, the expression ofV3 in terms ofQ
after averaging over the disorder, is

−βV3(q12, q13, q23) = Ext
Q

{
lim

n,m,l→0

1

2l

(
β2
∑
a,b

f (Qab)+ log detQ
)}
+ βFfree. (3.5)



Structure of metastable states in spin glasses 4455

It is important to bear in mind the difference between the roles of replicas 1 and 2, which
is encoded in the different form of the relative overlap matrices.Q11 refers to the first free
replica, whileQ22 refers to replica 2, which thermalizes atfixed overlapq12 with 1. Both
replicas are, however, independent from the third one, so the form ofQ11, Q12 andQ22 is
identical to the one assumed in the case ofV2 and the value of the variational parameters
(xr , r1, r0), which are functions ofq12, are determined by the same equations (2.12).

In second place,Q33 is assumed one-step RSB, with parameters(xs, s1, s0):

Q33
ab = (1− s1)δab + (s1− s0)εab + s0 (3.6)

there is no reason to setxs = xr , since just asQ22 is broken independently fromQ11, the
breakings ofQ22 andQ33 have to be assumed independent; moreover, there are no algebraic
motivations for this equality.

As regardsQ13, both the limitβ → 0 and the check of introducing a tentative additional
parameter, show that it is correct to assume a form similar toQ12,

Q13
ab = q13δa,1. (3.7)

However, the same limit shows that this form is no longer valid forQ23; namely, the
first row will still be equal toq23, but the rest of the matrix now cannot be set equal to zero.
Moreover, the structure ofQ23 has to take into account the RSB form ofQ22: if replicas
2 are organized into clusters, it can be that the overlap of 3 with the particular cluster that
contains thefirst replicaσ1 of 2 (this is the only replica of 2really coupled to 3, as shown
in (3.3)) is different from the overlap of 3 with any other cluster.

Therefore, we postulate a RSB form also forQ23. This is possible if we break the
symmetry in the rows ofQ23 as follows

Q23
ab = (q23− w23)δa,1+ (w23− z23)εa,1+ z23. (3.8)

In this expressionεa,1 is equal to 1 fora = 1, . . . , x, wherex is the breaking point, and
zero elsewhere. We note that the second member of (3.8) does not depend on the index
b sinceQ23 is broken into vertical rather than diagonal blocks and each row is made of
constant elements. This one-step RSB needs a breaking pointx, but the genesis of the
breaking shows clearly that forQ23 we must takexr as the breaking point, that is the same
as inQ22.

In conclusion, the new variational parameters are:

xs, s1, s0, w23, z23. (3.9)

With these ansatz, the expression ofV3 is (see appendix B for details)

−2βV3(q12, q13, q23) = Ext
xs ,s1,s0
w23,z23

{
2β2f (q13)+ 2β2f (q23)+ 2β2(xr − 1)f (w23)

−2β2xrf (z23)+ β2(xs − 1)f (s1)− β2xsf (s0)+ log(1− s1)
+ 1

xs
log

(
1+ xs s1− s0

1− s1

)
+ s0− y

1− s1+ xs(s1− s0)
}

(3.10)

with

y = q2
13+ (q23− w23)

2(a + b + c)+ 2(q23− w23)(w23− z23)(a + xr(b + c))
+2(q23− w23)(z23− q12q13)(a + bxr)+ (w23− z23)

2xr(a + xr(b + c))
+2(w23− z23)(z23− q12q13)xr(a + bxr) (3.11)
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and

a = 1

1− r1
b = − r1− r0

1− r1
1

1− r1+ xr(r1− r0)
c = − r0− q2

12

(1− r1+ xr(r1− r0))2 .

(3.12)

Expression (3.10) is very similar to the one ofV2(q12) with (xs, s1, s0) playing the role
of (xr , r1, r0) andy instead ofq2

12. Indeed, the saddle-point equations for(xs, s1, s0) are in
form exactly identical to (2.12), changingq2

12 into y. Moreover,V3 has to be maximized
with respect tow23 andz23:

(1− xr)β2f ′(w23) = (1− xr) 1

1− s1+ xs(s1− s0) [(q23− w23)(b + c)
+(w23− z23)(a + xr(b + c))+ (z23− q12q13)(a + bxr)]

xrβ
2f ′(z23) = xr 1

1− s1+ xs(s1− s0) [(q23− w23)c + xr(w23− z23)c

+(z23− q12q13)(a + bxr)].

(3.13)

We note that the equations for(xs, s1, s0) are coupled to equations (3.13) by means ofy,
that containsw23 andz23.

Let us now examine under which conditions the case ofV2 is recovered. It turns out
that

V3(q12 = 0, q13 = 0, q23) = V2(q23)

V3(q12 = 0, q13, q23 = 0) = V2(q13).
(3.14)

This is just what we expected for the following reason: settingq12 = 0, replica 2 thermalizes
as in the free case and so replicas 1 and 2 are both equilibrium configurations. In this
situation, if we set, for example,q13 = 0, constraint 1–3 is harmless and the pair 2–3
reproduces the case ofV2; the same is true forq23 = 0.

4. The shape of the potential

The most important information in the study ofV3 comes from the analysis of its minima
in the plane(q13, q23) at fixed values ofq12, which correspond to stable or metastable states
of the system. We then minimizeV3 with respect ofq13 andq23:

β2f ′(q13) = 1

1− s1+ xs(s1− s0) [q13− q12(q23− w23)(a + bxr)
−q12(w23− z23)xr(a + bxr)]

β2f ′(q23) = 1

1− s1+ xs(s1− s0) [(q23− w23)(a + b + c)
+(w23− z23)(a + xr(b + c))+ (z23− q12q13)(a + bxr)].

(4.1)

First, we note that for each value ofq12 there is a solution of (4.1) forq13 = q23 = 0,
with V3 = 0. This is the absolute minimum of the potential in the(q13, q23) plane and
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Figure 2. The constraintq23 in M1 as a function ofq12 at β = 1.64 andp = 3; qmax= 0.361,
qEA = 0.546.

corresponds to the situation in which the third replica sees a phase space identical to that
of the unconstrained system†.

For what concerns nontrivial minima, the numerical analysis of equations (4.1) in the
casep = 3, shows the following pattern.

(i) For any value ofq12 and for any temperature in the range(Tc, Td), we find a minimum
M1 with

q13 = qEA
q23 ∼ q12

V3(M1) = V2(qEA).

(4.2)

The interpretation ofM1 is very simple: the third replica is in the same pure state as the
first one, independently from the value ofq12; M1 has exactly the same meaning asM
for the two replica potential. Asq12 grows, the second replica approaches this state, not
changing the potential, until forq12 = qEA the three replicas are all in the same state and
q12 = q13 = q23 = qEA. We call this point�.

It is important to note thatq23 = q12 holds only in three points (see figure 2). Obviously
it happens forq12 = 0. Then, asq12 grows, we haveq12 > q23 and this holds until
q12 = qmax, whereqmax is the value for whichV2 has its maximum; here againq12 = q23.
For qmax< q12 < qEA we have the opposite situation, withq12 < q23, until we reach�.

This behaviour is consistent with the idea that at a distanceqmax from the state of
replica 1 the free energy reaches a maximum; the interpretation of figure 2 is then as
follows. Replicas 1 and 3 are in the same state but do not have the same role: replica 1 is
some quenched typical configuration of the state, while, in some sense, replica 3 represents
the centre of the state, because of the thermodynamic average. Whenq12 < qmax, replica
2 reaches its minimum energy taking the maximum distance from the centre of the state,
compatibly with the given value ofq12, and in so doingq23 results lower thanq12. The
opposite situation holds whenq12 > qmax.

† The requirement that replica 3 is sited somewhere in the phase space, translates into the formula:∫
dq13 dq23 e−NV3(q13,q23) = 1 ∀q12, and forN → ∞ this implies that in the absolute minimum the potential

has to be zero, as it is in our case.



4458 A Cavagna et al

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4

Figure 3. The constraintq23 in M2 as a function ofq12 at β = 1.64 andp = 3; qEA = 0.546,
q̄ = 0.385.

(ii) More interesting is the presence of a minimum with the third replica close to the
second one. ForT in the usual range(Tc, Td) and 06 q12 6 q̄(T ) we find a minimumM2

with

q23 ∼ qEA
q13 ∼ q12 6 qEA.

(4.3)

It is important to note that the last valueq̄ of q12 for whichM2 exists is at any temperature
less or equal toqEA.

Let us fix a reference temperatureT and examineM2 at different values ofq12. For
q12 = 0 we haveq13 = 0, q23 = qEA andV3(M2) = V2(qEA); this is trivial because we
have seen that in this caseV3 reduces toV2. Whenq12 6= 0 we force the second replica to
thermalize in a restricted portion of the phase space; the fact that we still find the minimum
M2 corresponding to the third replica in equilibrium close to the second one, shows that
there are local equilibrium states even at nonzero overlapq12 with the state of the first free
replica. The variation withq12 of the interesting quantities evaluated inM2 is shown in
figures 3–5.

We note thatq23 remains close toqEA, confirming the hypothesis that the second
and third replicas are in the same state. It is then crucial to verify whether the states
corresponding to the minimaM2 can be identified with TAP solutions, i.e. if their free
energy and self-overlap satisfy the TAP equations. First, at fixedq12, the self-overlap of
the state relative toM2 is given bys1 (see equation (3.6)). Secondly, we must compute the
free energy of this particular state; to this end we can write

V3(M2) = (f3− T63)− Ffree (4.4)

where f3 is the free energy of the state in which replica 3 thermalizes, and63 is the
logarithm of the number of states accessible to replica 3, compatibly with the constraints;
obviously, since replica 3 is in the same state of replica 2, which is fixed, we have63 = 0
and therefore

f3 = V3(M2)+ Ffree. (4.5)

It turns out that inM2 the relation holding betweenf3 and s1 is always the same as in
the TAP approach [5]. In other words, the state corresponding toM2 coincides with that
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Figure 4. The energy difference1E in M2 as a function ofq12 at β = 1.64 andp = 3;
q? = 0.295, q̄ = 0.385.
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Figure 5. The potentialV3 in M2 as a function ofq12 at β = 1.64 andp = 3; q? = 0.295,
q̄ = 0.385.

particular TAP solution specified by

fTAP = f3

qTAP = s1.
(4.6)

Since inM2 replicas 2 and 3 are in the same state, one can expect that not onlys1 but
alsoq23 is equal to the self-overlapqTAP of the corresponding TAP solution. Actually, this
is not true: q23 is very near tos1 = qTAP, but not exactly the same (the difference being
of order 10−3). The physical reason of this lies in the different role of the two replicas, as
we have already stressed: replica 2 is quenched in the state corresponding toM2 with a
nonequilibrium distribution, it is not in general a typical configuration of this state and then
q23 is not a good measure of the self-overlap. On the other hand, replica 3 truly thermalizes
into this state and thuss1, which comes from matrixQ33, identifies the correct self-overlap.
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Let us now consider the behaviour inM2 of the energy difference1E = E−Efree: we
note that there is a valueq12 = q? for which

1E(q?) = 0. (4.7)

The fact that in this minimum the energy is equal to that of the unconstrained system means
that replicas 2 and 3 are in a state of the same kind as the one chosen by the unconstrained
system, that is one of the TAP solutions dominating the equilibrium; indeed, we have
s1(q

?) = qEA (the same happens in the minimumM of V2). For this reason, the valley
entropic contributionSv to V3 is the same as in the free case (see equation (1.1)). Thus we
argue that

V3(q
?) = T6 = V2(qEA) (4.8)

which is what we find (see figure 5).
Therefore, we have the following picture: at temperatureT with Tc < T < Td , there

is an exponentially high number of equilibrium states partitioning the phase space and the
first unconstrained replica will thermalize into one of them, sayK. Through the potential
V3 we are able to see many other states at various distances fromK. For q12 < q̄ we have
a continuous spectrum of possible overlaps, each of them corresponding to adifferent kind
of state, whose energy is either higher, equal or lower than the equilibrium one. From our
discussion it follows that the closest states of the same kind and with the same equilibrium
energy asK, are found at overlapq? with K. At smaller distances there are local equilibrium
states with higher energy, the closest of which have overlapq̄ with K.

5. Temperature dependence

Until now we have studiedV3 at fixed temperature; now we examine the evolution of the
system withT , in particular in the two limitsT → Tc andT → Td .

At Tc the configurational entropy6 of the dominant equilibrium states goes to zero
[5, 9]; this means that the number of these states becomes of orderN and theyall have
zero overlap with each other. In this situation we expect that, given an equilibrium state,
the closest one is at overlap zero; indeed, we find thatq?→ 0 for T → Tc. Moreover, atTc
the equilibrium states have the lowest energy density [5, 9], while there is an exponentially
high number of local equilibrium states with higher energy; according to this we find a
nonzero value of̄q even atTc.

What happens atTd is more interesting. First, we know that at this temperature the
equilibrium states have the highest energy density, so we do not expect to find local
equilibrium states at higher energy; this is exactly what we have, sinceq̄ → q? for T → Td .
Moreover, at this temperature6 reaches a finite value, meaning that the number of the
equilibrium states is still exponentially high; therefore, it is not cleara priori what their
minimum mutual distance is. The very interesting feature shown by our potential is that

q̄, q?→ qd for T → Td (5.1)

whereqd is the value ofqEA at the dynamical transition. Equation (5.1) means that asT

approachesTd , the closest equilibrium states collapse into a single state of self-overlapqd .
More precisely, forT ∼ Td andp = 3, we find

qEA = (Td − T )1/2+ qd qd = 0.5

q? = a(Td − T )b + c.
(5.2)
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Figure 6. The energy difference1E in M2 as a function ofq12 at βlast< β < βd andp = 3.

A fit of the numerical data gives

a = −1.2

b = 0.24

c = 0.5004.

(5.3)

As we have seen, this indicates thatq? reachesqd at Td . The value of the exponentb can
be less firmly established; indeed, if we make a fit fixingc = 0.5 we obtain

b = 0.30. (5.4)

Finally, we can study the potential forT > Td . In this range the dominant equilibrium
state is the paramagnetic state and the two-replica potential has just the minimum in zero;
for this reason the minimumM1 of V3 disappears, and no other minima with1E = 0
exists. However, we still find the minimumM2 in a restricted range ofq12 (see figure 6),
to point out the existence of local equilibrium states even at temperature greater thanTd ,
corresponding to TAP solutions surviving aboveTd . This situation holds up to a temperature
Tlast> Td over which all nontrivial minima disappear. Forp = 3 we have

βc = 1.706

βd = 1.633

βlast= 1.573.

(5.5)

With regard to this see also [8].

6. Open questions and hints on the dynamics

Let us summarize some of our findings which are relevant for studying the dynamics. Near
each equilibrium valley there are local equilibrium states with an energy density greater that
the equilibrium one. These local equilibrium states exist up to a valueq̄ of the overlap,
while the nearest equilibrium states are found at overlapq?. At the dynamical transition
the three values̄q, q? andqd merge.

The most surprising consequence of this picture is that the equilibrium states are not
uncorrelated, i.e. they are not distributed randomly on the sphere, which would be the
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simplest possibility. Indeed, if they were randomly distributed, the nearest ones would
always be at an overlapq, given by

ln

(
1− q2

q2
EA(T )

)
= −26(T ) (6.1)

which should remain definitively different fromqd whenT → Td , since6(Td) has a finite
value.

It seems that the equilibrium valley, which atTd has a flat direction (the replicon
eigenvalue is zero), bifurcates into a bunch of not too different valleys belowTd , as in the
SK model. However, the organization of equilibrium states is not the same as in the SK
model, because it shows up only when we add a constraint to the system. It may be possible,
as suggested in [13], that this situation may be in some way described by a nonmonotonous
function q(x), as for example the one found in [5, 7].

We can now ask: What happens to a configuration starting at time zero near an
equilibrium one? In particular we are interested in computing the typical behaviour of
the overlapq(t) among the configuration at time zero and the configuration at timet . It
is natural to suppose that the form of the functionq(t) will be typical of a punctuated
equilibrium: exponentially long period of stasis, whereq(t) fluctuates around a value that
corresponds to a local equilibrium state, punctuated with fast variations ofq(t), which
correspond to jumps between one local equilibrium and other local equilibrium states.

According to the previous picture the following scenario is rather likely. After a short
transient timeq(t) will go to a value equal to the self-overlap of the valley, i.e.qEA. After
some exponentially large time it will jump to one of the nearest equilibrium states. If the
barriers increase by increasing the distance (and therefore with decreasing the overlap) the
most likely situation consists of a jumping to a local equilibrium state with overlapq̄.

What happens at later times is not clear. If the different local equilibrium states are not
correlated among themselves, (a many-replica potential is needed to investigate this point
further), the system will return to the original state after some exponentially large time.
Only after many attempts will the system jump to another equilibrium state at distanceq?.
At this point it is not likely that the system will jump back and it will start from this point
to do further jumps.

The scenario we have presented here seems to be the simplest one compatible with our
finding on the three-replica potential. In a future paper we plan to compare this proposal
with numerical simulations. It would also be interesting to study the problem in the random
energy model, where many detailed computations can be done.
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Appendix A

In this appendix we calculate explicitly the final form of the potentialV2(q12). We have:

−βV2(q12) = lim
n,m→0

1

2m

(
β2
∑
a,b

f (Qab)+ log detQ
)
+ βFfree. (A.1)
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This expression has to be computed according to the particular form assumed for the overlap
matrix. The first part is

lim
n,m→0

1

m
β2
∑
ab

f (Qab) = 2β2f (q12)+ β2f (1)+ β2(xr − 1)f (r1)− β2xrf (r0). (A.2)

The second part is the most complicated part. We use the following relation:

log detQ = log detQ11+ log det(Q22−Q21(Q11)−1Q12) (A.3)

whereQ21 stands for(Q12)T . With our ansatz, from (2.8) and (2.9)

log detQ11 = 0 (A.4)

and

Q21(Q11)−1Q12 = q2
12 (A.5)

is a constant matrix. In this way equation (A.3) becomes

log detQ = log detR (A.6)

with

Rab = Q22
ab − q2

12 = (1− r1)δab + (r1− r0)εab + (r0− q2
12). (A.7)

To calculate the determinant ofR we need to solve the eigenvalue equation

(1− r1)va + (r1− r0)
∑
b

εabvb + (r0− q2
12)
∑
b

vb = λva. (A.8)

Let us distinguish three cases.
(i) If ∑

b

εabvb = 0 ∀a (A.9)

and, consequently,∑
b

vb = 0 (A.10)

we have

λ1 = (1− r1). (A.11)

In (A.9) the number of independent equations is equal to the number of blocks, that ism/xr ;
the degeneration of the previous eigenvalue is then

d1 = m−m/xr . (A.12)

(ii) If ∑
b

vb = 0 (A.13)

we obtain:

λ2 = (1− r1)+ xr(r1− r0) (A.14)

because the elements of the vectorv must be equal in blocks of sizexr . The number of
equations determiningλ2 is one and thus we have

d2 = m− (m−m/xr)− 1= m/xr − 1. (A.15)
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(iii) If the previous conditions are not satisfied, and the sums are all different from zero,
equation (A.8) gives

λ3 = (1− r1)+ xr(r1− r0)+m(r0− q2
12) (A.16)

d3 = 1. (A.17)

Expression (A.6) then becomes

1

m
log detR = log(1− r1)+ 1

xr
log

(
1+ xr r1− r0

1− r1

)
+ 1

m
log

(
1+m r0− q2

12

1− r1+ xr(r1− r0)
)

−→
m→0

log(1− r1)+ 1

xr
log

(
1+ xr r1− r0

1− r1

)
+ r0− q2

12

1− r1+ xr(r1− r0) . (A.18)

From (A.2) and (A.18) we obtain the final form

−2βV2(q12) = 2β2f (q12)+ β2(xr − 1)f (r1)− β2xrf (r0)+ log(1− r1)
+ 1

xr
log

(
1+ xr r1− r0

1− r1

)
+ r0− q2

12

1− r1+ xr(r1− r0) . (A.19)

For the sake of completeness we note that there is a different method by which the
potential can be computed, based on the formula

−βNV2(q12) = lim
n→0

lim
R→1

1

n

× ∂

∂R

(∫
dσ exp(−βH(σ))

(∫
dτ exp(−βH(τ))δ(qστ − q12)

)R−1)n
−logZfree (A.20)

where in the calculation of the averageR has to be considered as an integer (compare with
equation (2.5)). In this way the replicated partition function takes the form

Zn,R =
∫

dτ ra exp

[
− β

( n∑
a=1

R∑
r=1

H(τ ra )

)] n∏
a=1

R∏
r=2

δ(τ 1
a τ

r
a − q12) (A.21)

where we setσa = τ 1
a . With this approach we obtain anR × nR global overlap matrixQ,

formed by then × n submatricesQrs
ab with a, b = 1, . . . , n; r, s = 1, . . . , R. In this way,

the matrixQ11 encodes the overlap 1–1, the matricesQ1r the overlap 1–2 and the matrices
Qrs with r, s 6= 1 encode the overlap 2–2. The ansatz that has to be taken for the various
matrices is a mere translation into this context of the one given in section 2.

The same line of reasoning can be applied in the computation of the three-replica
potential. Obviously, in both cases, the two methods are equivalent.

Appendix B

In this appendix we calculate the final form of the potentialV3. We have:

−βV3(q12, q13, q23) = lim
n,m,l→0

1

2l

(
β2
∑
a,b

f (Qab)+ log detQ
)
+ βFfree. (B.1)
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The first part is

lim
n,m,l→0

1

l
β2
∑
ab

f (Qab) = 2β2f (q13)+ 2β2f (q23)+ 2β2(xr − 1)f (w23)

−2β2xrf (z23)+ β2f (1)+ β2(xs − 1)f (s1)− β2xsf (s0). (B.2)

For the second part we use the following relation:

log detQ = log detQ11+ log det[Q22−Q21(Q11)−1Q12]

+ log det[Q33−Q31(Q11)−1Q13− (Q23−Q21(Q11)−1Q13)T

×(Q22−Q21(Q11)−1Q12)−1(Q23−Q21(Q11)−1Q13)] (B.3)

where we adopted the previous notation for the transposed matrices. The first two parts
on the right-hand side reproduce the case of the two-replicas potential and both go to zero
when(n,m, l)→ 0.

The remaining parts of the determinant are:

Q31(Q11)−1Q13 = q2
13

Q21(Q11)−1Q13 = q12q13

Q21(Q11)−1Q12 = q2
12

(B.4)

constant matrices. Finally, let us compute the inverse ofA = Q22− q2
12:

Aab = (1− r1)δab + (r1− r0)εab + (r0− q2
12) (B.5)

that is,

(A−1)ab = 1

1− r1 δab +
r0− r1
1− r1

1

1− r1+ xr(r1− r0)εab +
q2

12− r0
(1− r1+ xr(r1− r0))2 . (B.6)

Now it is possible to calculate the product

π = (Q23−Q21(Q11)−1Q13)T (Q22−Q21(Q11)−1Q12)−1(Q23−Q21(Q11)−1Q13). (B.7)

As can be easily seen, the three matrices have the correct form, since they are RSB matrices
with the same breaking pointxr . Due to this fact, the result of this product is a constant,
although very complicated, given in equation (3.11).

Now it remains to calculate:

log det[Q33− y]. (B.8)

Proceeding as in appendix A, withy instead ofq2
12, we obtain

1

l
log det[Q33− y] = log(1− s1)+ 1

xs
log

(
1+ xs s1− s0

1− s1

)
+ s0− y

1− s1+ xs(s1− s0) .
(B.9)

In this way we recover equation (3.10).
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